Цель выполнения расчетов

Особенности расчета и выбора воздуховодов зависят от их типа и материала, из которого они изготовлены. Последняя характеристика обуславливает нюансы, возникающие при движении воздуха и особенности взаимодействия лавины воздуха со стенками.

Воздуховоды бывают:

  • металлическими – это может быть черная сталь, оцинкованная, нержавейка;
  • алюминиевыми гибкими гофрированными;
  • пластиковые вентканалы – гибкие и жесткие;
  • тканевыми.

По геометрии сечения изготавливают воздуховоды круглые, прямоугольные, овальные. Последние не столь популярны, как два первых.

Даже если имеется самый правильный проект вентиляционной системы, ошибка в подборе сечений воздуховодов может привести к нарушению циркуляции воздуха.

Следствия неправильного расчета площади воздуховодов
Следствием ошибок в расчетах будет повышенная влажность, а дальше плесень и грибок в помещении. Без правильного расчета площади всех деталей невозможно подобрать подходящие элементы вентиляционного комплекса

От этого параметра зависит:

  • скорость протекания воздушной массы и ее объем;
  • степень герметичности соединений;
  • шумность вентиляционной системы;
  • электропотребление.

Вычисления, выполненные правильно, дадут возможность сэкономить средства, поскольку количество материала будет определено точно. Но помимо экономических вопросов, главными являются все-таки параметры вентиляции, обеспечивающие комфортные условия жизнедеятельности людей.

Алгоритм расчета сечения воздуховодов

Расчет сечения воздуховодов подразумевает определение размеров воздуховодов в зависимости от расхода пропускаемого воздуха. Он выполняется в 4 этапа:

  1. Пересчет расхода воздуха в м3/с
  2. Выбор скорости воздуха в воздуховоде
  3. Определение площади сечения воздуховода
  4. Определение диаметра круглого или ширины и высоты прямоугольного воздуховода.

На первом этапе расчёта воздуховода расход воздуха G, выраженный, как правило, в м3/час, переводится в м3/с. Для этого его необходимо разделить на 3600:

  • G [м3/c] = G [м3/час] / 3600

На втором этапе следует задать скорость движения воздуха в воздуховоде. Скорость следует именно задать, а не рассчитать. То есть выбрать ту скорость движения воздуха, которая представляется оптимальной.

Высокая скорость воздуха в воздуховоде позволяет использовать воздуховоды малого сечения. Однако при этом поток воздуха будет шуметь, а аэродинамическое сопротивление воздуховода сильно возрастёт.

Малая скорость воздуха в воздуховоде обеспечивает тихий режим работы системы вентиляции и малое аэродинамическое сопротивление, но делает воздуховоды очень громоздкими.

Для систем общеобменной вентиляции оптимальной скоростью воздуха в воздуховоде считается 4 м/с. Для больших воздуховодов (600×600 мм и более) скорость воздуха может быть повышена до 6 м/с. В системах дымоудаления скорость воздуха может достигать и превышать 10 м/с.

Итак, на втором этапе расчета воздуховодов задаётся скорость движения воздуха v [м/с].

На третьем этапе определяется требуемая площадь сечения воздуховода путем деления расхода воздуха на его скорость:

  • S [м2] = G [м3/c] / v [м/с]

На четвёртом, заключительном, этапе под полученную площадь сечения воздуховода подбирается его диаметр или длины сторон прямоугольного сечения.

Таблица сечений воздуховодов

В помощь проектировщикам разработано несколько таблиц сечений воздуховодов, которые позволяют быстро подобрать сечение в зависимости от полученной площади.

Общие сведения для вычисления площади сечения

Площадь труб для воздуховода рассчитывают по разным значениям:

  1. На соответствие санитарно-гигиеническим параметрам (СанПиН).
  2. По количеству проживающих.
  3. По площади комнат.

Результат можно получить как для отдельного помещения, так и для дома в целом. Для расчета есть специальные программы с заложенными в них алгоритмами. Еще один вариант расчета — использование формул.

Площадь сечения воздуховодов при их проектировании выбирается так, чтобы воздух по всех длине двигался с примерно одинаковой скоростью. По всей протяженности системы количество воздуха разное, поэтому площадь сечения воздуховода должна изменяться в большую сторону с ростом объема воздушной массы.

Вытяжная вентиляция
Если рассматривать вытяжную вентиляцию, то квадратура сечения растет по мере приближения к вентилятору. Только так можно гарантировать более-менее одинаковую скорость массы воздуха на всем протяжении воздухопровода

С ростом круглого сечения уменьшается скорость потока воздуха. Снизится при этом и аэродинамический шум. Минус таких воздуховодов в громоздкости конструкции, из-за чего невозможна их установка в пространство между черновым и навесным потолком, а также в увеличенной стоимости.

Если такой возможности нет, можно отдать предпочтение прямоугольной геометрии, поскольку высота прямоугольного сечения меньше. С другой стороны круглые изделия легче устанавливать, да и свои эксплуатационные преимущества у них имеются.

Овальный воздуховод
Поскольку круглые воздуховоды не всегда можно вписать в интерьер, а более эстетичные прямоугольные дорогие, как альтернативу, стоит рассмотреть овальные изделия. Они и эргономичны, и эффективны

Выбор того или иного варианта зависит от приоритетов пользователя. Если во главе угла экономия электроэнергии, минимальный шум и есть все возможности монтажа габаритной сети, лучший выбор — круглая форма воздуховода.

Этапы выполнения расчета

Расчетные работы состоят из нескольких этапов:

  1. Составления общей схемы системы вентиляции. Здесь должны быть отмечены длины прямых участков, поворотные части и их тип, места изменения сечения.
  2. Выбора кратности воздухообмена, идентичного санитарно-гигиеническим требованиям.
  3. Расчета скорости движения масс воздуха по трубопроводу. Зависит этот параметр от вида вентиляции, а она может быть естественной или принудительной.
  4. Расчета площади воздуховодов и других параметров.

Существует много программ для выполнения подобных расчетов.

Вентиляция в коттедже
Вычисления при помощи формул для сложной системы — задача непростая. Для дома небольших габаритов подсчет площади отдельных элементов, сечения воздуховодов вполне возможен

Расчет сечения воздуховода

Выражение, используемое для расчета квадратуры фасонных элементов и воздуховодов, выглядит так:

Sc = (L х 2.778) : V,

где:

  • Sc — площадь в поперечном разрезе;
  • L — расход потока воздуха, циркулирующего в системе;
  • 2.778 — коэффициент, согласовывающий различные размерности;
  • V — скорость воздушной лавины в конкретном месте, измеряется в метрах за секунду.

Итогом расчета будет величина, измеряющаяся в см².

Есть и альтернативная формула:

S = L : k × V,

Коэффициент К в этом случае равен 3600.

Определение фактической площади воздуховода

Регулярную площадь вентиляции для круглых вентканалов высчитывают по формуле:

S = (π x D2) : 400,

где:

  • S — фактическая площадь;
  • D — диаметр.

Для трубопроводов прямоугольного сечения:

S = (А х В) : 100,

где:

  • S — фактическая площадь;
  • D — диаметр;
  • А — высота воздуховода;
  • В — ширина конструкции.

Площадь сечения для трубы с овальным сечением высчитывают по формуле:

S = π × А × В : 4,

где:

  • А — больший диаметр овала;
  • В — меньший диаметр соответственно.

Есть и другие формулы для высчитывания площади воздуховода.

Используя такой нормативный документ, как СНиП, можно сравнить размеры сечений воздуховодов с требуемыми показателями. Таким образом, подходящий размер воздушного трубопровода определяется еще проще.

Некоторые производители в описании воздуховодов дают номограммы. Есть они и в нормативной литературе.

Номограмма лоя круглого воздуховода
Номограмма для металлического воздуховода с сечением в форме круга. Значения из нее подставляют в формулу. Все гибкие воздуховоды дополняют такими схемами (+)

Из номограмм можно взять значение площади сечения. Оно приблизительное, но для создания системы с минимальным уровнем шума подходят.

Чтобы найти размеры воздуховода для определенного ответвления трубопровода, по которому транспортируется заданный объем воздуха, нужно выполнить следующие действия:

  1. Определить на номограмме точку пересечения объема воздуха, перемещаемого за 1 час и линии наибольшей скорости для расчетного участка.
  2. Рядом с этой точкой найти значение наиболее подходящего диаметра.

Кроме этого, имея номограмму, можно не только облегчить расчет сечения воздуховодов и фасонных частей, но и конкретизировать потери давления на отрезке воздушной магистрали при установленной скорости.

Номограмму применять необязательно, можно определить нужную площадь сечения в зависимости от скорости воздушной массы.

Расчет скорости воздуха

Используя формулы или специальные таблицы, вычисляют скорость воздуховода. Ключевым параметром здесь является показатель кратности, определяющий объем воздуха, при котором происходит полноценное проветривание помещения объемом 1 м3 в течение 1 часа.

Специалисты рекомендуют для определения показателя кратности исследовать конкретные условия на действующих промышленных объектах, по которым есть фактические данные о выделении газов, токсических паров и др. Лучше всего делать самостоятельный расчет с применением формул.

Специальная таблица
Для упрощения расчетов существуют специальные таблицы, откуда можно взять готовое значение показателя кратности, но нужно иметь в виду, что в них приводят округленные параметры

Формула для вычисления кратности выглядит так:

N = V : W,

где:

  • N — искомая кратность;
  • V — объем свежей воздушной массы, поступающей в помещение в течение часа;
  • W — объем комнаты.

Единица кратности — число раз/час, V измеряется в мᶾ/ч, объем — в мᶾ.

Рассмотрим конкретный пример определения необходимого количества воздуха по кратности.

Имеется жилая комната объемом 22 мᶾ. Для нее потребуется воздуха: L = 22 х 6 = 132 м3, здесь 6 — кратность воздухообмена, взятая из таблицы.

Скорость перемещения массы (V) измеряют в м/с и определяют по формуле:

V=L : 3600 х S,

где:

  • L — используемый воздух (мᶾ/ч);
  • S — площадь воздуховода в разрезе (мᶾ).

Дополнительно еще 2 параметра влияют на скорость перемещения воздуха: уровень шума, коэффициент вибрации. При проектировании системы их нужно обязательно учитывать.

Пример расчета для небольшого коттеджа

Для расчета взят коттедж с внутренней площадью 108,8 м2 и высотой от пола до перекрытия 3 м. Внутри имеется гостиная, спальня, детская, кухня, санузел. Показатель кратности принимаем равным 1.

Параметры воздуховодов для коттеджа
Вентиляционная система позволяет избавить помещение от примесей, приносящих вред здоровью — потенциально опасных и провоцирующих аллергические реакции, ухудшить самочувствие

Сначала рассчитывают количество удаленного и поступаемого воздуха в целом на здание.

Применяют для этого методику СНиП:

  1. Поскольку спальня и гостиная одинаковые по площади, количество удаленного воздуха из них равно 21 х 3 х 1 = 63 мᶾ/ч.
  2. Для детской — 24 х 3 х 1 = 72 мᶾ/ч.
  3. Для кухни — 22 х 3 х 1 + 100 = 166 мᶾ/ч.
  4. Для санузла — 10 х 3 х 1 = 30 мᶾ/ч.
  5. В итоге: 63 х 2 + 48 + 166 + 30 = 394 мᶾ/ч.

Коридор и прихожую в расчет не брали. 100 мᶾ — это тот объем, что уходит через вытяжку на кухне.

Правильное распределение потоков воздуха в доме также очень важный момент. В постройках такого типа обычно устраивают систему естественной вентиляции. Принудительный элемент здесь все-таки присутствует — кухонная вытяжка.

Далее определяют диаметры вентиляционных каналов. Так как 100 м3 удаляет вытяжка принудительно, то остается распределить оставшиеся 294 м3. Они уйдут естественным образом через 2 шахты. На каждую придется: 294 : 2 = 147 мᶾ.

Поскольку в шахтах естественной вентиляции скорость воздуха колеблется в пределах от 0,5 до 1,5 м/с, обычно в расчетах берут среднее значение — 1 м/с. Подставив известные величины в формулу S = L : k × V, находят: S = 147 : 3600 х 1 = 0,0408 м².

Теперь появилась возможность определить диаметр воздуховода с кругом в сечении по формуле: S = (π x D2) : 400 или 0,0408 = (3,14 х D2) : 400.

Решив это уравнение с одним неизвестным, путем несложных вычислений, находят, что диаметр воздуховода равен 2,28 мм. Под это значение подбирают ближайший больший стандартный размер трубы.

Переводная таблица
При помощи этой переводной таблицы можно выбрать эквивалентный диаметр воздуховода с сечением в форме круга. Это значительно упрощает расчет

Когда монтируют воздуховод прямоугольного сечения, выбирают его размер по таблице, ориентируясь на площадь. Ближайшее большее значение — 200 х 250 мм.

По такой же схеме определяют площадь сечения отвода под кухонную вытяжку с той разницей, что скорость воздуха здесь равна 3 м/с. S = 100 : 3600 х 3 = 0,083 м² или диаметр 107 мм.

Переводная таблица необходима тогда, когда нужно выполнить расчет воздуховодов с прямоугольным сечением и применить при этом таблицу для круглых изделий. Здесь представлены диаметры воздуховодов с кругом в сечении, в которых снижение давления за счет трения равно аналогичному значению в прямоугольной конструкции.

Существует три способа определения эквивалентного значения:

  • по скорости;
  • по поперечному разрезу;
  • по расходу.

Эти величины связаны с разными параметрами воздуховода. Для каждого из них есть индивидуальная методика использования таблиц. Главное, чтобы вне зависимости от примененной методики, величина утраты давления на трение получилась одинаковой.

В заключение проводится проверка скорости: V = 147 : (3600 х 0,0408) = 1,0 м/с. Это соответствует допустимому пределу.

Фасонные изделия и их расчет

При монтаже воздуховодов прямые участки различных размеров соединяют при помощи фасонных изделий.

Фасонные изделия
При производстве и воздуховодов, и фасонных изделий необходим подсчет их площади. Без этого невозможно определить правильно нужное количество материала для изготовления деталей

К фасонным изделиям относятся:

  1. Отводы. Их используют для изменения направления воздушного трубопровода под всевозможным углом. Бывают как круглыми, так и прямоугольными, овальными.
  2. Переходы. С их помощью соединяют воздуховоды различного сечения. Геометрия любая — от круглой до комбинированной.
  3. Муфты, ниппели. Соединяют прямые отрезки магистрали.
  4. Тройники. Сочленяют разветвления или две ветки воздуховода.
  5. Заглушки. Перекрывают воздушный поток.
  6. Крестовины. Разделяют или соединяют воздушные потоки.
  7. Утки. Обеспечивают разноуровневый переход воздуховода.

Чтобы рассчитать нужные параметры фасонных изделий, необходимы математические навыки.

Роль фасонных изделий в вентиляционной системе
Любому фасонному изделию отведена своя особая роль в вентиляционной системе. Производители каждое из них проектируют отдельно. Поставляются они совместно с основными элементами

Ошибка, допущенная в одном показателе, повлечет за собой ухудшение эксплуатационных характеристик системы. Готовых формул для таких расчетов не существует.

Таблица стандартных типоразмеров
В таблице представлены стандартные типоразмеры воздуховодов. Даже профессионалы вместо сложных вычислений применяют такие и подобные специальные таблицы

Многие проектировщики пользуются специальными программами, онлайн-калькуляторами. Потребуется только ввести первичные величины и получить на выходе готовые параметры.

Программы позволяют не только определить нужные величины всех деталей, но и сделать их развертку. Такая развертка, отпечатанная на 3D-принтере, позволяет выполнить идеальную подгонку вентиляционных каналов.

Эквивалентный диаметр воздуховода

При сравнении круглых и прямоугольных воздуховодов разного сечения с точки зрения аэродинамики прибегают к понятию эквивалентного диаметра воздуховода. С его помощью можно определить, какой из двух вариантов сечений является предпочтительным.

Что такое эквивалентный диаметр воздуховода

Эквивалентный диаметр прямоугольного воздуховода — это диаметр воображаемого круглого воздуховода, в котором потеря давления на трение была бы равна потере давления на трение в исходном прямоугольном воздуховоде при одинаковой длине обоих воздуховодов.

В книгах и учебниках В. Н. Богословского такой диаметр называется «Эквивалентный по скорости диаметр», в литературе П. Н. Каменева — «Равновеликий диаметр по потерям на трение».

Расчёт скорости воздуха в воздуховоде

При расчёте системы вентиляции один из основных показателей – кратность воздухообмена. Иными словами,какое количество воздушных масс необходимо для комфортного проветривания 1 м³ комнаты за 1 час. В данном случае также можно обратиться к разработочным таблицам, но следует знать, что все показатели в них округлены, поэтому более точные данные получаются при самостоятельных расчётах. Рассчитать кратность воздухообмена можно по формуле:

N = V / W, где

  • V – количество свежих воздушных масс, которые поступают в помещение за 60 минут (м³/час);
  • W – объём комнаты, м³.

Это следует знать! Комфортная скорость воздухообмена для большинства вентсистем бытового характера равна 3−4 м/с.

Провести аэродинамические расчёты и вычислить скорость перемещения воздуха можно по следующей формуле:

ω = L / 3600 × S, где

  • L – объём используемого воздуха за 1 час;
  • S – площадь сечения воздуховода.

Нормы воздухообмена для квартиры
Нормы воздухообмена для квартиры

Расчёт сопротивления сети воздуховода

Воздушные потоки при транспортировке по трубам испытывают сопротивление, особенно это касается труб с сечением в виде прямоугольника. Чтобы обеспечить нормальную производительность системы, необходимо подобрать вентилятор соответствующей мощности. Самостоятельно вручную определить эти параметры сложно, в проектной группе все вычисления выполняются при помощи программы.

Это следует знать! Для квартир площадью 50−150 м² стандартные параметры сопротивления воздухоотводящей системы составляют от 75 до 100 Па для скорости потока 3−4 м/с.

На сопротивление не влияет количество комнат, которое обслуживает вентсистема, значение коэффициента зависит от структуры и протяжённости коммуникации.

Скорость потока в прямой зависимости от сопротивления
Скорость потока в прямой зависимости от сопротивления

Потери давления на прямых участках

Для расчёта производительности вентиляционного оборудования можно просто сложить требуемое количество воздушных масс и подобрать модель, которая подходит по этим параметрам. Однако в паспорте на изделие не учтена сеть воздуховодов. Поэтому при подключении его в систему производительность значительно упадёт в зависимости от параметра сопротивления в трубопроводе. Чтобы определить падение давления в системе, необходимо уточнить его снижение на ровных участках, поворотных и соединительных элементах. Падение давления на ровных участках определяется по формуле:

Р = R × L + Еi × V2 × Y / 2, где

  • R – удельное потери напора, вызванные силой трения во время перемещения воздуха, Па/м;
  • L – длина прямого участка воздуховода, м;
  • ω –скорость движения воздуха, м/с
  • Y– плотность воздушных масс, кг/м³;
  • Еi– сумма потерь напора на местные сопротивления (отводы, переходы, решетки и т.п.), данные можно взять из справочника.

Прямолинейный участок вентиляции
Прямолинейный участок вентиляции

Потери давления на местных сопротивлениях

Для расчёта потерь на поворотных элементах необходимо в первую очередь определить все участки, которые будут мешать прямому движению потоков. Можно использовать формулу, но все данные в зависимости от элемента воздуховода и материала изготовления уже определены и являются справочной информацией. Так, постепенно участок за участком следует пройти по всей его длине, затем сложить все показатели. Нельзя забывать и об отрезке, который находится за вентилятором, ведь на отвод потоков также должно хватать напора.

Во время расчёта нужно учесть все криволинейные соединения
Во время расчёта нужно учесть все криволинейные соединения

Расчёт материалов для воздуховода и фасонных частей

Чтобы подобрать размеры и элементы конструкции, например, тройники, отводы, переходы, нет необходимости выполнять это вручную, тем более что номенклатура довольно большая. Всё можно сделать в специальной программе, в том числе и площадь фасонных частей воздуховодов, для этого нужно всего лишь ввести первичные данные. Результат готов будет через несколько секунд.А также можно при необходимости воспользоваться табличной формой эквивалентных сечений воздуховодов круглого диаметра, в которых снижение напора на трение равно снижению давления в сечениях прямоугольной формы.

Расчёт материалов выполнен при помощи программы
Расчёт материалов выполнен при помощи программы

Расчёт мощности нагревателя в сети

Для расчёта приточной вентиляционной системы необходимо в первую очередь учесть мощность нагревателя, подогревающего входящие массы в прохладное время года. По утверждённым нормам температура потока, который попадает в комнату, должна быть не менее 18°C, показатели наружного воздуха зависят от месторасположения региона. В современном оборудовании есть возможность регулировать скорость циркуляции воздушных масс, таким образом, можно сэкономить в зимнее время электроэнергию. Перед выбором модели температуру нагрева воздуха, который поступает снаружи, рассчитывают по формуле:

ΔТ = 2,98 × Р / L, где

  • Р – мощность оборудования, Вт;
  • L– расход воздушных масс.

Правильно произведённые расчёты – это залог многолетней эксплуатации оборудования
Правильно произведённые расчёты – это залог многолетней эксплуатации оборудования

Очередность проектирования вентиляционной системы

В первую очередь определяются расчетные показатели отдельных частей общего вентиляционного комплекса. Для ограничения участков используются тройники или технологические заслонки, потребление воздуха вдоль всех участков стабильное. Если участок имеет разветвления, то их величина потребления воздуха суммируется, а на участке устанавливают общее значение. На аксонометрическую схему наносят полученные показатели.

После этого выбирается магистральное направление вентиляционной или отопительной системы. Магистральный участок характеризуется самой высокой потребляемой величиной воздуха по сравнению со всеми выделенными участками на момент вычислений и является самым протяженным. В соответствии с нормативными документами нумерацию участков следует начинать с минимально загруженного и продолжать по нарастанию воздушных потоков.

Очередность проектирования вентиляционной системы

Подбор параметров расчетного участка осуществляется в зависимости от рекомендованных нормативными требованиями скоростей в вентиляционном канале и в жалюзийной решетке. Чтобы эстетично оформить воздухоотводное отверстие, используют торцевую площадку для воздуховода.

По основной категории нормативных требований устанавливается стремительность воздушной струи для:

  • центральных воздухопроводов в пределах 8 м/с;
  • разветвлений в границах 5 м/с;
  • решеток жалюзи в диапазоне 3 м/с.

Учитывая имеющиеся необходимые предпосылки, производится проектирование для вентиляционного комплекса. В ходе проведения вычисления можно пользоваться таблицами, где на базе математических предписаний установлены фактические затраты на абразивный износ, данные динамического давления и потребления воздуха.

Расход воздуха в вентиляции

Следует учитывать, что фактический расход воздуха для круглого и прямоугольного воздуховодов с одинаковым сечением отличается даже при полной эквивалентности скоростей передвижения воздушных потоков. При температуре воздуха, превышающей +20°С, необходимо использовать поправочные коэффициенты на трение и местные сопротивления.

Расчет вентиляционной системы складывается из вычислений основного магистрального трубопровода и всех отводов, подключенных к нему. Вместе с этим следует добиваться условий, которые бы способствовали постоянному возрастанию скорости движения воздуха по мере сближения со всасывающим или нагнетающим вентилятором. Если конструкция воздуховода не дает возможности подсчитать потери отводов, а их показатели выходят за пределы 10% общих потоков, то допускается использование диаграммы для сдерживания избыточного давления.

Определение сечения поверхности воздуховодов

Расчетом площади воздуховодов должно гарантироваться обеспечение надлежащих санитарных условий и температурного режима в помещении. Для помещений с избыточным количеством тепла его следует удалить, а в комнатах с недостатком обогрева свести к минимуму теплопотери. Вместе с тем не следует забывать об экономической рациональности при соблюдении перечисленных требований.

Определение сечения поверхности воздуховодов

Темп циркуляции воздуха в комнатах не должен нарушать комфортное пребывание людей в помещении. При этом учитывается обязательная пылегазоочистка рабочего пространства. Предельно допустимая концентрация опасных для здоровья синтетических и взвешенных веществ регламентируется государственными стандартами.

Дополнительно следует рассматривать последние предписания Госнадзора. Нормы воздуха устанавливаются с учетом технологических характеристик промышленного процесса, конкретной функции здания или сооружений. Взрывоопасные вещества и соединения, находящиеся в воздухе, не должны превышать значений предельно допустимой концентрации, установленных противопожарными государственными органами.

Установку вентиляционного комплекса с принудительным притоком/оттоком воздуха необходимо производить лишь в том случае, когда функциональность естественной вентиляции не может гарантировать необходимых характеристик по санитарным нормам и микроклиматическим условиям.

Использование математических формул

Производительность работы вентиляционной системы базируется на правильном подборе определенных деталей и технического оснащения. Отрицательное воздействие на микроклиматические условия может оказать перепроектирование помещения, если не воспользоваться инженерной помощью в расчете площади воздуховодов.

Цель расчета вентиляционной системы

Цель расчета заключается в обеспечении необходимого соотношения замещения воздуха во всех помещениях в соответствии с их предназначением. Для принудительной и естественной фильтровентиляции необходимы индивидуальные инструкции, но содержащие совокупную ориентированность. В ходе установления противодействия воздушному потоку принимают во внимание геометрическую форму и вещество, из которого изготавливаются воздуховоды.

Также принимается в расчет их суммарная длина, кинематическая схема и присутствие разветвлений. Отдельным пунктом рассчитываются теплопотери для поддержания благоприятных микроклиматических условий и сокращения расходов на техническое обслуживание зданий в холодное время.

Для того чтобы рассчитать площадь воздуховодов, пользуются коэффициентами аэродинамических вычислений. Учитывая полученные величины, подбирают приемлемые габариты латерального сечения воздушного канала в зависимости от нормативной величины быстроты перемещения воздушной струи. Затем определяют пиковые потери давления в вентиляционной системе, ориентируясь на геометрическую форму, темп передвижения и характеристики модели вентиляционного канала.

Общие требования

Воздуховоды из термостойких материалов необходимо устанавливать в системах вентиляции, предназначенных для удаления легковоспламеняющихся соединений или откачки воздуха, температура которого превышает 80 °C. Основные транзитные сегменты вентиляции выполняются из металла.

В расчете итоговых характеристик воздуховодов должна быть предусмотрена возможность осуществить:

Системы противодымной вентиляции

  • установку устройств, автоматически перекрывающих во время пожара проем воздуховода и препятствующих распространению огня и продуктов горения;
  • монтаж воздушных затворов на промежуточных лестничных площадках;
  • включение максимум пяти воздуховодов в каждый поэтажный коллектор;
  • монтирование систем АПС (автоматической противопожарной сигнализации).

Чтобы определить необходимые размеры фасонных частей и самой системы, можно прибегнуть к специальным программам. Стоит только вписать требуемые данные, и результат вычисления появится практически мгновенно. Существуют также специальные таблицы со всеми требуемыми коэффициентами, формулами и значениями.

Простому обывателю, не имеющему профильных знаний в определенной инженерной области, не по силам реализовать все стадии расчетов. Поэтому выполнять конструкторскую разработку не только вентиляционной, но и любых других коммуникационных систем следует доверить профессионалам.

Пример расчета вентиляции с помощью калькулятора

На этом примере мы покажем, как рассчитать приточную вентиляцию для 3-х комнатной квартиры, в которой живет семья из трех человек (двое взрослых и ребенок). Днем к ним иногда приезжают родственники, поэтому в гостиной может длительное время находиться до 5 человек. Высота потолков квартиры — 2,8 метра. Параметры помещений:

№ помещения 1 2 3
Наименование помещения Детская Спальня Гостиная
Площадь 17 м² 14 м² 22 м²
Кол-во людей 1 человек
(днем и ночью)
2 человека ночью,
1 человек днем
0 человек ночью,
5 человек днем

Нормы расхода для спальни и детской зададим в соответствии с рекомендациями СНиП — по 60 м³/ч на человека. Для гостиной ограничимся 30 м³/ч, поскольку большое количество людей в этой комнате бывает нечасто. По СНиП такой расход воздуха допустим для помещений с естественным проветриванием (для проветривания можно открыть окно). Если бы мы и для гостиной задали расход воздуха 60 м³/ч на человека, то требуемая производительность для этого помещения составила бы 300 м³/ч. Стоимость электроэнергии для нагрева такого количества воздуха оказалась бы очень высокой, поэтому мы пошли на компромисс между комфортом и экономичностью. Для расчета воздухообмена по кратности для всех помещений выберем комфортный двукратный воздухообмен.

Магистральный воздуховод будет прямоугольным жестким, ответвления — гибкими шумоизолированными (такое сочетание типов воздуховодов не самое распространенное, но мы выбрали его в демонстрационных целях). Для дополнительной очистки приточного воздуха будет установлен угольно-пылевой фильтр тонкой очистки класса EU5 (расчет сопротивления сети будем вести при загрязненных фильтрах). Скорости воздуха в воздуховодах и допустимый уровень шума на решетках оставим равными рекомендуемым значениям, которые заданы по умолчанию.

Расчет начнем с составления схемы воздухораспределительной сети. Эта схема позволит нам определить длину воздуховодов и количество поворотов, которые могут быть как в горизонтальной, так и вертикальной плоскости (нам нужно посчитать все повороты под прямым углом). Итак, наша схема:

 

Сопротивление воздухораспределительной сети равно сопротивлению самого длинного участка. Этот участок можно разделить на две части: магистральный воздуховод и самое длинное ответвление. Если у вас есть два ответвления примерно одинаковой длины, то нужно определить, какое из них имеет большее сопротивление. Для этого можно принять, что сопротивление одного поворота равно сопротивлению 2,5 метров воздуховода, тогда наибольшее сопротивление будет иметь ответвление, у которого значение (2,5*кол-во поворотов + длина воздуховода) максимально. Выделять из трассы две части необходимо для того, чтобы можно было задать разный тип воздуховодов и разную скорость воздуха для магистрального участка и ответвлений.

В нашей системе на всех ответвлениях установлены балансировочные дроссель-клапаны, позволяющие настроить расходы воздуха в каждом помещении в соответствии с проектом. Их сопротивление (в открытом состоянии) уже учтено, поскольку это стандартный элемент вентиляционной системы.

Длина магистрального воздуховода (от воздухозаборной решетки до ответвления в помещение № 1) — 15 метров, на этом участке есть 4 поворота под прямым углом. Длину приточной установки и воздушного фильтра можно не учитывать (их сопротивление будет учтено отдельно), а сопротивление шумоглушителя можно принять равным сопротивлению воздуховода той же длины, то есть просто посчитать его частью магистрального воздуховода. Длина самого длинного ответвления составляет 7 метров, на нем есть 3 поворота под прямым углом (один — в месте ответвления, один — в воздуховоде и один — в адаптере). Таким образом, мы задали все необходимые исходные данные и теперь можем приступать к расчетам (скриншот). Результаты расчета сведены в таблицы:

Результаты расчета по помещениям

№ помещения 1 2 3
Наименование помещения Детская Спальня Гостиная
Расход воздуха 95 м³/ч 120 м³/ч 150 м³/ч
Площадь сечения воздуховода 88 см² 111 см² 139 см²
Рекомендуемый диаметр воздуховода Ø 110 мм Ø 125 мм Ø 140 мм
Рекомендуемые размеры решетки 200×100 мм
150×150 мм
200×100 мм
150×150 мм
200×100 мм
150×150 мм


Результаты расчета общих параметров

Тип вентсистемы Обычная VAV
Производительность 365 м³/ч 243 м³/ч
Площадь сечения магистрального воздуховода 253 см² 169 см²
Рекомендуемые размеры магистрального воздуховода 160×160 мм
90×315 мм
125×250 мм
125×140 мм
90×200 мм
140×140 мм
Сопротивление воздухопроводной сети 219 Па 228 Па
Мощность калорифера 5.40 кВт 3.59 кВт
Рекомендуемая приточная установка Breezart 550 Lux
(в конфигурации на 550 м³/ч)
Breezart 550 Lux (VAV)
Максимальная производительность
рекомендованной ПУ
438 м³/ч 433 м³/ч
Мощность электрич. калорифера ПУ 4.8 кВт 4.8 кВт
Среднемесячные затраты на электроэнергию 2698 рублей 1619 рублей

Расчет воздухопроводной сети

  • Для каждого помещения (подраздел 1.2) рассчитывается производительность, определяется сечение воздуховода и подбирается подходящий воздуховод стандартного диаметра. По каталогу Арктос определяются размеры распределительных решеток с заданным уровнем шума (используются данные для серий АМН, АДН, АМР, АДР). Вы можете использовать и другие решетки с такими же размерами — в этом случае возможно незначительное изменение уровня шума и сопротивления сети. В нашем случае решетки для всех помещений оказались одинаковыми, поскольку при уровне шума в 25 дБ(А) допустимый расход воздуха через них составляет 180 м³/ч (решеток меньшего размера в этих сериях нет).
  • Сумма расходов воздуха по всем трем помещениям дает нам общую производительность системы (подраздел 1.3). При использовании VAV-системы производительность системы будет на треть ниже за счет раздельной регулировки расхода воздуха в каждом помещении. Далее рассчитывается сечение магистрального воздуховода (в правой колонке — для VAV системы) и подбираются подходящие по размерам воздуховоды прямоугольного сечения (обычно дается несколько вариантов с разным соотношением размеров сторон). В конце раздела рассчитывается сопротивление воздухопроводной сети, которое получилось весьма большим — это связано с использованием в вентсистеме фильтра тонкой очистки, который имеет высокое сопротивление.
  • Мы получили все необходимые данные для комплектации воздухораспределительной сети, за исключением размера магистрального воздуховода между ответвлениями 1 и 3 (в калькуляторе этот параметр не рассчитывается, поскольку конфигурация сети заранее неизвестна). Однако площадь сечение этого участка можно легко рассчитать вручную: из площади сечения магистрального воздуховода нужно вычесть площадь сечения ответвления №3. Получив площадь сечения воздуховода, его размер можно определить по таблице.

Расчет мощности калорифера и выбор приточной установки

Далее по производительности системы и разности температур воздуха определяется максимальная мощность калорифера. После этого на основании всех полученных данных подбирается приточная установка.

Рекомендуемая модель Breezart 550 Lux имеет программно настраиваемые параметры (производительность и мощность калорифера), поэтому в скобках указана производительность, которая должна быть выбрана при настройке ПУ. Можно заметить, что максимально возможная мощность калорифера этой ПУ на 11% ниже расчетного значения. Недостаток мощность будет заметен только при температуре наружного воздуха ниже -22°С, а это бывает не часто. В таких случаях приточная установка будет автоматически переключаться на меньшую скорость для поддержания заданной температуры на выходе (функция «Комфорт»).

В результатах расчета помимо требуемой производительности системы вентиляции указывается максимальная производительность ПУ при заданном сопротивлении сети. Если эта производительность оказывается заметно выше требуемого значения, можно воспользоваться возможностью программного ограничения максимальной производительности, которая доступна для всех вентустановок Breezart. Для VAV-системы максимальная производительность указывается для справки, поскольку регулировка ее производительности производится автоматически в процессе работы системы.

Расчет стоимости эксплуатации

В этом разделе рассчитывается стоимость электроэнергии, затрачиваемой на нагрев воздуха в холодный период года. Затраты для VAV-системы зависят от ее конфигурации и режима работы, поэтому принимаются равными среднему значению: 60% от затрат обычной системы вентиляции. В нашем случае можно сэкономить снижая расход воздуха ночью в гостиной, а днем — в спальне

Выводы

Расчёт квадратных метров воздуховодов с использованием современного программного обеспечения является не таким уж сложным процессом. Однако при обустройстве сложных, разветвленных систем большое значение имеет опыт использование различных материалов и фасонных частей. Кроме этого следует учитывать возможности потери тепла, появление конденсата, изоляции от шума и вибрации. А также ряд других факторов, возникающих в результате эксплуатации.

[spoiler title=”Источники”]

  • https://sovet-ingenera.com/vent/raschety/raschet-ploshhadi-vozduxovodov-i-fasonnyx-izdelij.html
  • https://mir-klimata.info/technology/26436/
  • https://homius.ru/raschyot-ploshhadi-vozduhovodov-i-fasonnyih-izdeliy.html
  • https://TopVentilyaciya.ru/ventilyaciya/elementy/raschet-ploshhadi-vozduhovodov.html
  • https://www.rfclimat.ru/htm/vent_calculator.htm
  • https://HouseChief.ru/raschyot-ploshchadi-vozduhovodov-i-fasonnyh-konstrukcij.html

[/spoiler]

Ссылка на основную публикацию