Когда необходимо выполнять проект молниезащиты и заземления?

Строго говоря для этого нам придется обратиться к статье 49 Градостроительного кодекса РФ, в которой определен перечень объектов, требующих проведение экспертизы проектной документации. Этот и будет тот список, проекты объектов которого в теории должны в обязательном порядке содержать раздел “Молниезащита” (или “Молниезащита и заземление”, так эти системы соседствуют друг с другом). Он включается наряду с подразделами ЭС (наружные электросети), ЭН (наружное освещение) в состав раздела ЭОМ (системы внутреннего электроосвещения и силового оборудования) под аббревиатурой ЭГ (проекты молниезащиты и заземления).

Итак, что же это за объекты:

  1. Индивидуальные жилые дома с этажностью более 3-х этажей
  2. Многоквартирные дома более 3-х этажей и с количеством блочных секций более 4-х
  3. Объекты капитального строительства с этажностью более 2 и общей площадью более 1500 кв. м, не предназначенные для производственных нужд или проживания людей
  4. Производственные здания и сооружения с этажностью более 2 и общей площадью более 1500 кв. м, а также все объекты до 2-х этажей и менее 1500 кв. м, для которых необходимо установление санитарно-защитных зон
  5. Любые объекты, которые в соответствии с статьей 48.1 того же кодекса признаются особо опасными, сложными с технической точки зрения или уникальными (например, газохранилища, гидротехнические сооружения или памятники архитектуры)
  6. Любые объекты, которые планируется строить или реконструировать в пределах границ зон охраны трубопроводной инфраструктуры

Что включает типовой проект молниезащиты здания?

Состав проекта молниезащиты и заземления стандартно включает  следующие разделы:

Титульный лист. Содержит название и контакты проектной организации, наименование и адрес объекта проектирования, стадия проекта (П или РД), раздел и номер тома, а также подписи проектировщика (главного инженера проекта) и дату.

Содержание проекта. Номер соответствующих листов проекта и их содержание, в примечаниях указывают формат.

Пояснительная записка. Содержит общие данные об объекте проектирования, назначение системы молниезащиты и заземления, технические требования, методики выбора и расчеты отдельных элементов (молниеприемников, токоотводов и заземления), а также рекомендации по проверкам и дальнейшей эксплуатации.

Спецификация оборудования. Позиция и наименование отдельных комплектующих, марка производителя, их количество и единицы измерения.

Ведомость ссылочных и прилагаемых документов. Перечень используемых ГОСТов, нормативов и правил в области молниезащиты и заземления, копии паспортов на устройства проверки, сертификаты на оборудование и лицензии проектировщика.

Чертежи. Планы кровли и фасадов с обозначением зон защиты молниеотводов (в том числе на разных высотных отметках), монтажные схемы молниеприемной части, токоотводов и системы заземления, конструкции отдельных узлов.

Исходные данные для проектирования

Для начала проектировщику необходимо собрать следующую информацию и получить от заказчика нужные чертежи:

  • генплан объекта (все сооружения, которые необходимо защищать, а также инфраструктура, технологические линии, наземные и подземные коммуникации, трубопроводы, телекоммуникационные каналы, электро и слаботочка и т.п.) (если необходимо защищать несколько зданий или учитывать соседство других)
  • отдельные чертежи (планы) кровли и фасадов здания с перечнем используемых при строительстве материалов, включая наличие и материалы водосточной системы
  • прочие необходимые для расчета чертежи в составе строительной и архитектурной части, наличие и габаритные размеры крышных надстроек
  • назначение объекта, степень присутствия в нем людей
  • климатические условия местности, зона грозовой активности
  • характеристики грунта (тип почвы, уровень грунтовых вод)

Типы конструкций молниеотводов

Наша компания предлагает различные модели защитного электрооборудования. В каталоге представлены молниеотводы:

Стержневой

Одностержневые – выполнены в виде заостренного сверху стержня или мачты. Стержневая молниезащита устанавливается непосредственно на здание в высшей его точке либо рядом с ним на некотором удалении, не превышающем радиус зоны молниезащиты

Двухстержневые, выполненные с одинаковой или различной высотой, – устанавливаются на противоположных концах зданий либо с максимально возможным удалением друг от друга, но при этом создающие неразрывную зону молниезащитывытянутого контура.

многократный-стержневой

Многократные стержневые – используются для создания плотной зоны молниезащитысложной формы на больших площадях, выделенных под малоэтажную застройку.

одиночный-тросовой-молниеотвод

Одиночные тросовые – из многожильного металлического троса, натянутого вдоль здания или линии электропередачи по высшим точкам конструкции и закрепленного на опорах, соединенных с заземлением посредством токоотводов. Тросовая молниезащита обеспечивает безопасность объектов большой протяженности.

Многократные тросовые – выполнены в виде сетки, изготовленной из металлических тросов. Предварительный расчет зон молниезащитыдает показатель расстояния между параллельными тросами, образующими сетку. В местах пересечения граней ячеек используется сварка для обеспечения надежного соединения жил, препятствующего образованию искры. Сетка размещается поверх верхней плоскости объекта, надежно фиксируется и подключается через токоотводы к системе заземления.

Различают два типа грозозащиты:

  • Пассивная молниезащита – система, принимающая на себя прямой удар молнии во время разряда.
  • Активная молниезащита – приспособление, провоцирующее электрический разряд в себя. Осуществляется посредством инициации процесса ионизации воздуха при росте потенциалов напряжения, возникающего перед началом появления молнии.

Классификация степеней надежности защиты

Эффект использования молниезащиты заключается в создании вокруг них зоны, в которой прямой разряд молнии произойдет с минимальной вероятностью. При устройстве системы и расчете зон молниезащиты учитывается не только высота, на которой должна находиться высшая точка молниеотвода, но и степень надежности создаваемой защиты.

Различают степень надежности:

  • А – ее показатель составляет > 99,5 % вероятности перехвата прямого удара молнии во время грозы.
  • Б – параметр колеблется в пределах 95… 99,5 % надежности защиты от прорыва электроразряда к контролируемому объекту.

зоны-молниезащиты

Зона А включается в построение зоны молниезащиты для жилых домов, объектов повышенной опасности (легко воспламеняемых, взрывоопасных), объектов высокой ответственности и ценности.

Зона Б рассчитывается для сельскохозяйственных комплексов, ангаров, стоянок, складов, не связанных с хранением особо ценной продукции и товаров.

В разрезе, сделанном по вертикали молниеотвода, эти зоны молниезащиты накладываются, причем А расположена внутри Б. Внешние границы зоны А должны охватывать все находящиеся на территории контроля строения. Зона Б при этом имеет большее покрытие.

Расчет молниеотвода

  • Для однократной стержневой молниезащиты зона безопасности занимает внутренний объем конуса, вершина которого совпадает с верхушкой молниеотвода. Его основание представляет круг на земле, радиус которого для зоны А рассчитывается по формуле:

r0 = (1,1 — 0,002 h) h,

где ro – радиус основания, h – высота молниеотвода и ее значение меньше 150 м.

Для зоны Б формула: r0 = 1,5 h.

Высота объекта (hx), расположенного внутри зоны безопасности, создаваемой молниеотводом известной высоты (h), составляет соответственно:

Для А – hx = 0,85 h; при этом радиус объекта: rx = (1,1 — 0,002 h) (h — hx / 0,85).

Для Б – hx = 0,92 h, с радиусом объекта: rx =1,5 (h — hx / 0,92).

Исходя из этого и известных данных о высоте уже имеющихся на территории сооружений, можно сделать расчет необходимой высоты молниеотвода:

h = (rx + 1,63 hx) / 1,5.

  • Расчет молниеотвода (hc) двукратной комплектации происходит по формулам:

hc=ho-(0,17+3*10-4h)(L-h)

rc=ro

rcx=ro(hc-hx)/hc

Расчет зон молниезащиты учитывает высоту молниеотводов (h), расстояние между точками их установки (L), высоту (hx) расположенных на территории объектов.

  • Для расчета многократных молниеотводов, из которых устраивается грозозащита большой площади покрытия, учитываются параметры расположенных рядом парных точек.
  • Расчеты для тросовой молниезащиты проводятся с использованием формулы:

hc=ho-(0,14+5*10-4h)(L-h);

где h<>

Расчет молниеотвода с применением троса должен учитывать расстояние между точками крепления (L), высоту опор (hоп), стрелу провеса – показатель провисания в середине пролета. Высота троса для этой точки высчитывается:

При длине пролета менее 120 м: h=hоп – 2;

При расстоянии между опорами 120 – 150 м: h=hоп – 3.

Грамотный расчет зон молниезащиты позволяет обеспечить максимальную безопасность и сохранность объектов.

Этапы проектирования

Первый этап включает сбор пакета документов и информации:

  • Генплан объекта (все сооружения, которые необходимо защищать, а также инфраструктура, технологические линии, наземные и подземные коммуникации, трубопроводы, телекоммуникационные каналы, электро и слаботочка и т.п.) (если необходимо защищать несколько зданий или учитывать соседство других);
  • Отдельные чертежи (планы) кровли и фасадов здания с перечнем используемых при строительстве материалов, включая наличие и материалы водосточной системы;
  • Прочие необходимые для расчета чертежи в составе строительной и архитектурной части, наличие и габаритные размеры крышных надстроек;
  • Назначение объекта, степень присутствия в нем людей;
  • Климатические условия местности, зона грозовой активности;
  • Характеристики грунта (тип почвы, уровень грунтовых вод).

На втором этапе разрабатывается концепция проекта, при котором производится:

  • Определение категории молниезащиты объекта. По регламентирующим документам РД 34.21.122-87 или СО 153-34.21.122-2003 выбираем класс молниезащиты (I, II, III или IV);
  • Выбор метода молниезащиты (защитный угол, катящаяся сфера или сетка) и типа контура заземления (очаговое, кольцевое или фундаментное);
  • Выбор материала элементов системы. На основе нормативов с учетом эстетических и экономических соображений, а также особенностей монтажа и окружающей среды (самые распространенные – Al, Cu, сталь оцинкованная или нержавеющая);
  • Определение мест установки молниеприемников и прокладки токоотводов.

На третьем этапе рассчитываются:

  • Молниеприемное оборудование – расчет зон защиты, выбор молниеприемной системы (стержневые, тросовые молниеприемники или сетка, а также их комбинация), определение их диаметров и длин;
  • Токоотводы (расчет количества и диаметра);
  • Расчет количества и мест установки кровельных и фасадных держателей;
  • Расчет контура заземления.

Преимущества использования сервиса расчётов

Сервис расчётов позволяет не просто проверить надежность системы молниезащиты, но и выполнить наиболее рациональный и правильный проект защиты от молнии, обеспечивая:1.

меньшую стоимость конструкции и монтажных работ

Уменьшает ненужный запас и использует менее высокие, менее дорогие в монтаже, молниеприёмники

меньшее количество ударов молнии в систему

Сокращая вторичные негативные последствия, что особенно важно на объектах со множеством электронных приборов (количество ударов молнии уменьшается с уменьшением высоты стержневых молниеприёмников).

Примеры проектов, выполненных в сервисе расчётов

Проект заземления и молниезащиты жилого многоквартирного дома

Проект заземления и молниезащиты для жилого многоквартирного дома
Проект заземления и молниезащиты для жилого многоквартирного дома, вид 1
Проект заземления и молниезащиты для жилого многоквартирного дома, вид 2
Проект заземления и молниезащиты для жилого многоквартирного дома, вид 3

Проект молниезащиты для торгового центра

Проект молниезащиты для торгового центра
Проект молниезащиты для торгового центра, вид 1
Проект молниезащиты для торгового центра, вид 2

Проект заземления и молниезащиты для нефтяных резервуаров

Проект заземления и молниезащиты для нефтяных резервуаров
Проект заземления и молниезащиты для нефтяных резервуаров, вид 1
Проект заземления и молниезащиты для нефтяных резервуаров, вид 2

Общее понятие

Прежде чем перейти непосредственно к теме, стоит напомнить, что каждый молниеотвод имеет свою зону защиты. Вероятность поражения молнией в ее пределах чрезвычайно мала, но все же существует, и составляет 1%. В зависимости от количества молниеоводов, их расположения и типа, эта зона может принимать различные геометрические формы.

Методика расчета молниезащиты – подготовительный этап

Перед тем, как приступить непосредственно к расчету, необходимо оценить свой объект, и выделить к какой категории он относится. Напомним, что их существует три:

  • Первый класс предусматривает наиболее серьезную молниезащиту и относит к себе помещения, где при нормальном технологическом режиме образуются взрывоопасные концентрации;
  • Ко второму классу относят помещения, в которых возможность взрыва появляется при нарушении технологического режима;
  • К третьему классу относят все остальные случаи, в которых поражение молнией здания приведет к меньшим материальным расходам.

После потребуется выбрать средства молниезащиты, которые вы собираетесь использовать. Конечно, сюда относятся молниеотводы, которые могут быть отдельностоящими, либо располагаться непосредственно на объекте.

Хотим обратить внимание, что для зданий первой категории используют отдельно стоящие молниеотводы, которые обеспечивают растекание тока, минуя помещения. Для второго класса возможны оба варианта. И, наконец, для третьего целесообразным вариантом будет последний.

Методика расчета молниезащиты

Охватить тему в полной мере невозможно, так как в зависимости от выбранного молниеотвода используются различные системы расчета.

Лишь в качестве примера мы вам расскажем, как происходит расчет стержневого молниеотвода одиночного. Стоит заметить, что зона его безопасности имеет форму конуса. Соответственно, здесь основными будут два параметра – высота этого конуса и его радиус на земле.

h0=0,85h

r0=(1,1-2*10-3h)h

rх=(1,1-2*10-3h)(h-1,2hх)

Где:

h0 – высота конуса;

r0 – радиус конуса;

hх – горизонтальное сечение на высоте здания и его радиус ;

rх – высота здания.

Наконец, в заключении хочется добавить, что в интернете сейчас возможно найти специальные программы, которые способны самостоятельно рассчитать все необходимые параметры. Для удобства использования существует возможность создания файла DXF, для последующей работы в программах CAD.

Обратите внимание, что если вы сомневаетесь в собственных силах, и никогда раньше не имели дела с подобными расчетами, вам лучше перепоручить это дело профессионалам. Ведь ошибка в этом случае может стоить слишком дорого. Потому и экономия в данном случае неуместна.

Назначение и состав системы

Для защиты зданий от грозовых разрядов чаще всего используется так называемая «пассивная» молниезащита, состоящая из таких конструктивных элементов, как:

  • молниеприемник, обустраиваемый в виде металлического штыря, троса или специальной сеточной конструкции;
  • токоотвод (спуск), используемый для перенаправления разряда на заземляющее устройство (ЗУ);
  • сама заземляющая конструкция.

Далее будут рассмотрены основные параметры системы молниезащиты, подлежащие расчету.

Молниеотвод и спуск

Что касается первой составляющей молниезащиты (молниеприемника) – требованиями ПУЭ предусматривается, чтобы он располагался в самой верхней точке защищаемого строения.

Для стандартных конструкций штыревого класса место размещения этого элемента выбирается исходя из того, чтобы заостренный конец его пики находился на 2-3 метра выше плоскости или конька крыши.

Проектирование заземления и молниезащиты
При наличии на защищаемом объекте нескольких штыревых молниеприемников согласно общепринятой методике обязательно просчитывается расстояние между соседними молниеотводами.

В случае использования тросового или сеточного молниеприемника для соответствующих элементов молниезащиты проводят расчеты либо основные параметры троса (длина и сечение), либо размеры отдельной ячейки сетки.

Молниеотводы большей длины применять не рекомендуется, поскольку они начнут притягивать к себе даже те грозовые разряды, которые ничем не угрожают данному объекту.

Токоотвод необходим для перенаправления электрического разряда, принятого молниеприемником, в направлении заземляющего устройства. С одной стороны он подсоединяется к «уловителю» молний, а с другой – к конструкции заземлителя.

Его основными расчетными величинами являются материал отводящей ленты, ее длина и сечение, обеспечивающие наименьшее электрическое сопротивление отводящей цепочки.

С точки зрения расчета системы для достижения требуемого результата этот элемент должен изготавливаться из металлов с высокой электропроводностью и иметь достаточно большое сечение (обычно оно составляет 6-8 кв. мм).

Заземляющее устройство

Заземляющая конструкция для молниезащиты рассчитывается исходя из требования достижения надежного контакта с грунтом, обеспечивающего идеальные условия для растекания токового разряда в землю.

Проектирование заземления и молниезащиты
Расчету этой части молниезащиты нужно уделить особое внимание, поскольку без надежного заземления все остальные элементы защитной системы теряют свою функциональность.

Перед расчетом заземляющего контура молниезащиты необходимо отметить, что его конструкция изготавливается из вертикально забиваемых в землю толстых металлических штырей, труб или стальных профилей (швеллеров).

Их длина и сечение определяются расчетным путем исходя из требований создания идеальных условий для стекания тока разряда молнии в землю.

Помимо этого, к расчетным элементам заземления относятся и стальные перемычки, объединяющие вбитые в землю стержни в единый контур и соединяемые методом сварки. Их расчетными параметрами являются длина и сечение, а также марка стали, которые обеспечивают требуемое сопротивление растекания.

В следующем разделе приводится пример расчета системы защиты от поражения молниевым разрядом.

Цель расчета защитного заземления

Обустраиваемое на стороне потребителя заземляющее устройство предназначено для защиты не только персонала, обслуживающего электроустановки, но и рядовых пользователей.

Важно! Опасный потенциал может попасть на металлические части оборудования во время работы с ним совершенно случайно (из-за повреждения изоляции проводов, например).

Полноценный расчет заземления гарантирует образование надежного контакта защитного устройства с землей, приводящего к растеканию тока и снижению уровня опасного напряжения.

Таким образом, назначение расчета заземляющих устройств – создание условий, исключающих риск поражения живых организмов высоким потенциалом путем его снижения в точке замыкания. В отсутствие хорошо просчитанного и функционального заземлителя любое прикосновение к корпусу поврежденного оборудования равнозначно прямому контакту с фазной жилой.

Выбор контура

Перед расчетом контура Вам предоставляется возможность выбрать один из следующих вариантов заземляющих устройств:

  • Треугольная конструкция, параметры которой определяются еще на этапе проектирования.
  • Линейное сооружение протяженного типа, монтируемое по периметру защищаемого объекта.
  • Модульно-штыревая заземляющая конструкция.

Каждый из перечисленных выше способов сборки и последующего монтажа заземляющих устройств нуждается в подробном рассмотрении.

Треугольная конструкция

Этот вариант изготовления ЗК – самый известный и распространенный среди профессионалов и любителей. Для обустройства такой конструкции потребуется приготовить следующие элементы:

контурзаземления в виде треугольника

  • Двухметровые металлические стержни (арматурные прутья) в количестве 3-х штук.
  • Столько же стальных перемычек, предназначенных для объединения прутьев в единую конструкцию.
  • Медная шина, необходимая для соединения ЗК с точкой сбора жил от заземляемого оборудования в распределительном шкафу (ГЗШ – главная заземляющая шина).

Плоскость сварного контура с уже вбитыми в землю штырями при обустройстве ЗУ должна располагаться на глубине примерно 30-60 см.

Линейный контур

Линейное заземление выбирается в случае, когда к защитному сооружению требуется подключить несколько единиц оборудования, размещенных на удалении один от другого. Оно состоит из нескольких вбитых в землю штырей (3), расположение которых относительно друг друга выбирается из расчетных данных.

линейная схема контура заземления
Линейная схема контура заземления для частного дома

От собранной по этой схеме конструкции, как и в случае с треугольником в сторону распределительного щитка с ГЗШ делается отвод (2). Перед тем как рассчитать такой ЗК – следует учесть, что общее число штырей ограничено взаимным влиянием аварийных токов, протекающих в каждом одиночном заземлителе.

Модульно-штыревое заземление

Модульный тип ЗУ применяется в ситуациях, когда площадь на участке перед домом ограничена небольшими размерами и допускается обустройство одной штыревой конструкции.

модульно-штыревое заземление
Схема монтажа одиночного заземляющего электрода

Она содержит в своем комплекте следующие элементы:

  • Стальной стержень полутораметровой длины с медным покрытием и имеющейся на
  • рабочей части резьбой.
  • Специальную муфту из латуни, обеспечивающую получение резьбового соединения вертикально вбиваемого штыря с заземляющим отводом.
  • Латунные зажимы особой конструкции, гарантирующие надежное сочленение металлических штырей с соединительной полосой.
  • Наконечники для самих заземляющих стержней.
  • Насадку с ударной площадкой, позволяющую передавать импульс от забивающего инструмента (вибромолота).

Комплект модульно-штыревого заземления
Комплект модульно-штыревого заземления

Обратите внимание: Для надежной защиты от коррозии все резьбовые элементы стержней покрываются графитной пастой, входящей в комплект фирменной поставки.

Защитная смазка сохраняется долгое время и не растекается при нагревании штырей и других элементов такого ЗУ. Входящая в состав антикоррозийная лента устойчива к воздействию агрессивных сред и защищает от разрушения всю конструкцию в целом.

Подробно о монтаже модульно-штыревого заземления читайте на этой странице.

Исходные данные для расчета заземления

Перед началом обустройства заземления расчет которого нужно провести, необходимо заранее определиться с такими исходными данными, как:

  • Линейные размеры забиваемых в грунт стальных штырей.
  • Расстояние между ними (шаг монтажа).
  • Допустимая глубина погружения.
  • Характеристики почвы в месте обустройства заземления.

Дополнительное замечание: Перед проведением расчета также потребуется знать величину сопротивления грунта Ом на участке проведения монтажных работ.

При его определении важно помнить о том, что он сильно отличается от места к месту и в значительной степени зависит от климатической зоны, к которой относится регион. Помимо этих данный придется учесть конфигурацию и материал заготовок, из которых сваривается готовое сооружение (либо обычный стальной уголок, либо медная широкая полоска).

Согласно ПУЭ минимальные размеры элементов для треугольной или линейной контурной конструкции должны быть:

  • полоса – сечение 48 мм2;
  • уголок 4х4 мм;
  • круглый брусок – сечение 10 мм2;
  • стальная труба диаметром 2,5 см со стенками толщиной не менее 3,5 мм.

Полезное замечание: Минимальную длину штырей вычисляют с учетом технических требований (необходимостью получения требуемого сопротивления стеканию в землю).

В соответствие с этими требованиями ее выбирают не менее 2-2,5 метра. Расстояние между соседними точками погружения стержней должно быть кратным их длине. В зависимости от размеров и конфигурации площадки для обустройства ЗУ элементы конструкции устанавливаются либо в ряд, либо в виде правильного треугольника (иногда для этого выбирается квадратная форма). Используемые в этом случае методики расчета различных вариантов ЗУ ставят своей задачей получение данных по числу стержней и параметрам соединительной полосы (ее длины и сечения).

Расчет элементов заземляющего устройства

Определение параметров проводников, используемых в конструкции любого заземлителя, проводится с учетом следующих соображений:

  • Длина металлических стержней или штырей в значительной мере определяет эффективность всей системы защитного заземления.
  • Большое значение имеет и протяженность элементов металлических связей.
  • От линейных размеров этих конструктивных составляющих зависят расход материала, а также суммарные затраты на обустройство ЗУ.
  • Сопротивление вертикально забиваемых электродов в первую очередь определяется длиной.
  • Их поперечные размеры не оказывают существенного влияния на качество и эффективность обустраиваемой защиты.

Обратите внимание: Порядок выбора сечения проводников определяется в ПУЭ, поскольку этот показатель характеризует устойчивость к коррозии (электроды должны служить 5-10 лет).

Помимо этого всегда нужно помнить о «золотом» правиле, согласно которому чем больше металлических заготовок предусмотрено в схеме – тем лучше характеристики безопасности контура.

одиночный вертикальный заземлитель
Схема установки одиночного вертикального заземлителя

Также следует учесть, что мероприятия по организации заземления нельзя назвать легким занятием. При большом количестве составляющих системы увеличиваются объемы земляных работ. А решение вопроса о том, каким конкретно способом улучшать качество заземления (за счет длины или количества электродов) остается за самим исполнителем.

В любом случае при обустройстве ЗУ произвольного типа рекомендуется придерживаться следующих правил:

  1. стержни необходимо вбивать до отметки, находящейся ниже уровня промерзания почвы минимум на 50 сантиметров;
  2. такое их расположение позволит учесть сезонные факторы и исключить их влияние на работоспособность защитной системы;
  3. расстояние между вертикально вбитыми элементами зависит от формы выбранной конструкции и длины самих стержней.

Для корректного выбора этого показателя рекомендуется воспользоваться справочными таблицами.

Расчет заземления
Таблица определения параметров заземлителей

С целью сокращения объема предстоящих расчетов (их упрощения) сначала желательно определить величину сопротивления
стеканию токов КЗ для одиночного стержня.

С учетом влияния, оказываемого на искомую величину горизонтальными элементами конструкции, сопротивление для вертикальных штырей вычисляется по следующей формуле:

сопротивление вертикальных заземлителей

Если монтируемое ЗУ обустраивается в разнородном грунте (другое его название – двухслойный), удельное сопротивление можно определить так:

удельное сопротивление

где Ψ – это так называемый «сезонный» коэффициент;

ρ1 и ρ2– удельные сопротивления слоев почвы (верхней и нижней прослойки соответственно), учитываемые при расчетах в Омах на•метр;

Н – толщина слоя грунта в метрах, расположенного в верхней части земляного покрова;

t – заглубление вертикальных штырей или стержней (оно соответствует глубине подготовленной траншеи), равное 0,7 метрам.

Достаточное для получения эффективного заземления число стержней (горизонтальные составляющие пока не учитываются) определяется так:
определение количества стержней

где – это нормируемое ПТЭЭП сопротивление растеканию.

С учетом горизонтальных элементов ЗУ формула для определения количества вертикальных штырей принимает такой вид:

формула расчета вертикальных штырей

где под ηв понимается коэффициент использования конструкции, указывающий на взаимное влияние токов стекания различных единичных элементов друг на друга.

Дополнительная информация: При обустройстве системы из линейно расположенных штырей следует помнить о том, что в этом случае их взаимное влияние проявляется особенно сильно.

При уменьшении шага монтажа этих элементов защитного контура его общее сопротивление растеканию тока заметно увеличивается. Число элементов заземляющего сооружения, полученное по результатам описанных выкладок, следует округлить до большего значения.

Расчеты заземления онлайн удается автоматизировать, если воспользоваться разработанным для этого специальным онлайн калькулятором на нашем ресурсе.

Пример расчета заземления

В качестве «классического» примера расчета заземления рассмотрим вариант ЗУ с учетом заданных исходных данных, то есть проведем вычисления для одиночного металлического штыря. Сразу оговоримся, что такие простейшие конструкции применяются при организации повторного заземления высоковольтных опор. В рассматриваемой ситуации согласно положениям ПУЭ (смотрите п.1.7.103.) сопротивление растеканию тока не может быть более 15, 30 и 60 Ом для напряжений 660, 380 и 220 Вольт соответственно.

Расчет переносного заземления

Перед расчетом переносного заземления (ПЗ) следует учесть, что для этого типа защитных приборов требования к сопротивлению стеканию тока еще более высокие, чем у стационарных ЗУ (фото ниже).

Обратите внимание: Самое главное в этой ситуации – правильно рассчитать сечение заземляющих проводов переносного устройства, определяющих эффективность его действия.

переносное заземление
Устройство переносного заземления из четырех заземлителей

При решении этой проблемы, прежде всего, следует научиться различать сети и установки с различными действующими напряжениями. Провода ПЗ (согласно требованиям действующих стандартов) должны выдерживать продолжительный нагрев при замыкании в питающих линиях трехфазного и однофазного напряжения. Для электроустановок с этим показателем до 1000 Вольт выбирается шина сечением не менее 16 кв. мм.

В сетях, где напряжение превышает 1000 Вольт, предельная величина сечения проводов ПЗ не должна быть менее 25 мм2. Точный расчет этого значения производится обычно по следующей формуле:

S = ( Iуст √tф ) / 272

где Iуст – это ток короткого замыкания;

– время его действия в секундах;

272– коэффициент, указывающий на тип металла проводника и отличающийся для разных токов КЗ (для меди, в частности он равен 250, а в расчетах взят с небольшим запасом).

В случаях, когда действующее напряжение не превышает 6-10 кВ – требуемое для надежной защиты сечение провода колеблется в пределах от 120 до 185 мм2. Поскольку комплект переносных заземлений с такими шинами будет очень тяжелым и неудобным в работе – согласно ПУЭ допускается использовать несколько ПЗ с меньшим сечением. При подготовке рабочего места такие заземления включаются в защищаемую цепь параллельно.

В последнем случае в формулу подставляются максимальные значения по времени воздействия тока короткого замыкания, а в трехфазных цепях искомая величина определяется для каждой их фаз. Во втором случае особое внимание уделяется аккуратности обустройства ПЗ, чтобы избежать недопустимого в условиях наложения защитного заземления межфазного замыкания.

Дополнительная информация: При обустройстве переносной конструкции не допускается применять кабель в изоляции, не позволяющей визуально контролировать состояние рабочих жил.

Помимо этого комплект такого заземления обязательно оснащается достаточно «мощными» зажимами, посредством которых элементы переносной конструкции надежно закрепляются на токопроводящих частях. Для их фиксации на заземляющих проводах должны применяться крепления, позволяющие обходиться без переходных элементов. Такая предусмотрительность позволит увеличить площадь контакта и повысить надежность имеющегося соединения. В этом случае конструкция способна выдержать значительные по величине токи и сохранить свою работоспособность в течение длительного времени.

При наложении такого заземления в трехфазных силовых цепях с напряжениями выше 1000 Вольт для получения более надежного контакта допускается использовать сварку. В исключительных случаях согласно ПУЭ разрешено болтовое сочленение, но только при условии предварительной пайки контактной зоны. В заключение отметим, что в рассмотренной ситуации для образования надежного соединения потребуется комплексный подход (ограничиваться только одной пайкой, например, не допускается).

[spoiler title=”Источники”]

  • https://www.mzke.ru/proekt_molniezashhity.html
  • https://Groze.net/raschet-molnieotvoda.html
  • https://perestroika.msk.ru/services/proekt-molniezashhity-i-zazemleniya/
  • https://calculations.zandz.com/
  • https://www.mzke.ru/metodika_rascheta_molniezashhity.html
  • https://EvoSnab.ru/ustanovka/molnija/raschet-molniezashhity
  • https://FishkiElektrika.ru/raschet-zazemleniya

[/spoiler]

Ссылка на основную публикацию