Глава Nvidia рассказал, как изобретение технологии глубокого обучения началось в 2012 году с архитектуры Fermi и пары GeForce GTX 580

Технология глубокого обучения (от англ. «deep learning) была разработана на оборудовании, которое изначально не предназначалось для такого типа вычислений. Генеральный директор Nvidia Дженсен Хуанг (Jensen Huang) рассказал в подкасте Джо Рогана (Joe Rogan), что исследователи, впервые разработавшие глубокое обучение, сделали это на паре 3-гигабайтных видеокарт GeForce GTX 580 в режиме SLI ещё в 2012 году.

Обзор смартфона HONOR X9c Smart: прочность со скидкой

Наушники HUAWEI FreeBuds 6, которые понимают жесты

Обзор смартфона HUAWEI Pura 80: удобный флагман с «Алисой»

Репортаж со стенда HONOR на выставке MWC 2025: передовые новинки и стратегические планы на будущее с ИИ

Лучший процессор за 20 тысяч рублей — сравнение и тесты

Смартфон HUAWEI Mate 70 Pro как выбор фотографа

Обзор планшета HONOR Pad V9: нейросети спешат на помощь

Hollow Knight: Silksong — песнь страданий и радостей. Рецензия

Пять главных фишек камеры HONOR Magic 7 Pro

Исследователи из Университета Торонто изобрели глубокое обучение для улучшения распознавания изображений в системах компьютерного зрения. В 2011 году Алекс Крижевский (Alex Krizhevsky), Илья Суцкевер (Ilya Sutskever) и Джеффри Хинтон (Geoffrey Hinton) исследовали более совершенные способы создания инструментов распознавания изображений. В то время нейронных сетей ещё не существовало. Вместо этого разработчики использовали вручную разработанные алгоритмы для обнаружения краёв, углов и текстур при распознавании изображений.

Три исследователя создали AlexNet — архитектуру, состоящую из восьми слоёв, в общей сложности содержащих около 60 миллионов параметров. Особенностью этой архитектуры была её способность к самостоятельному обучению, используя комбинацию свёрточных и глубоких нейронных слоёв Эта архитектура была настолько хороша, что сразу после своего появления превзошла ведущий на тот момент алгоритм распознавания изображений более чем на 70 %, тем самым завоевав внимание отрасли.

Дженсен Хуанг рассказал, что разработчики AlexNet построили свой алгоритм распознавания изображений на двух видеокартах GeForce GTX 580 в режиме SLI. Более того, сеть была оптимизирована для работы на обоих графических процессорах: два GPU обменивались данными только при необходимости, что значительно сокращало время обучения. Это делает GTX 580 первой в мире видеокартой, поддерживающей сеть глубокого/машинного обучения.

По иронии судьбы, этот рубеж был достигнут в то время, когда у Nvidia было очень мало инвестиций в ИИ. Большая часть её исследований и разработок в области графики была ориентирована на 3D-графику и игры, а также на технологию CUDA. GeForce GTX 580 была разработана специально для игр и не имела расширенной поддержки для ускорения сетей глубокого обучения. Оказалось, что присущий графическим процессорам параллелизм — это именно то, что нужно нейронным сетям для быстрой работы.

Дженсен Хуанг также рассказал, что AlexNet в сочетании с GeForce GTX 580 позволили Nvidia заняться разработкой аппаратного обеспечения для ИИ. Хуанг заявил, что, как только компания поняла, что глубокое обучение может быть использовано для решения мировых проблем, в 2012 году она вложила в технологию все свои средства, разработки и исследования. Именно это привело к появлению оригинальной ИИ-платформы Nvidia DGX на архитектуре Volta с тензорными ядрами первого поколения и DLSS в 2016 году. Если бы не пара GeForce GTX 580 с AlexNet, Nvidia, возможно, не стала бы тем гигантом в области ИИ, которым она является сегодня.

Андрей
Андрей
Задавайте вопросы в комментариях
Задать вопрос

Помогла ли вам статья?

Оцените статью
( Пока оценок нет )
Ремонт и отделка
Добавить комментарий

Этот сайт использует Akismet для борьбы со спамом. Узнайте, как обрабатываются ваши данные комментариев.